• PhD, Clemson University, Clemson, SC, 1984, Nutrition/Physiology
  • Postdoctoral Training, Vanderbilt University School of Medicine & Howard Hughes Medical Institute, Nashville, TN, Molecular Physiology

Research Interests

Dr. Gettys has a broad interest in the signaling systems which link cell surface receptors to transcriptional programs regulating the metabolic and endocrine functions of adipose tissue. An additional area of interest includes the nutrient sensing mechanisms linking modulation of specific subsets of genes by dietary macronutrients, including lipids and amino acids.

Selected Publications

  1. Fang, H., Stone, K.P., Forney, L.A., and Gettys, T.W. 2021. The role of reduced methionine in mediating the metabolic responses to protein restriction using different sources of protein. Nutrients 13: 2609-2628.  PMC8399679
  2. Fang, H., Stone, K. P., Ghosh, S., Forney, L. A., Sims, L. C., Vincik, L., and Gettys, T.W. 2021. Hepatic Nfe2l2 is not an essential mediator of the biological responses to dietary methionine restriction.  Nutrients 13: 1788-1806.  DOI: 10.3390/nu13061788  PMC8225036
  3. Stone, K.P., Ghosh, S., Kovalik, J.P., Orgeron, M., Wanders, D., Sims, L., Gettys, T.W. The acute transcriptional responses to dietary methionine restriction are triggered by inhibition of ternary complex formation and linked to Erk1/2, mTOR, and ATF4.  Scientific Reports Feb 12;11(1):3765. doi: 10.1038/s41598-021-83380-0 PMCID: PMC7880992 
  4. Forney, L.A., Fang, H., Sims, L.C., Stone, K.P., Vincik, L.Y., Vick, A.M., Gibson, A.N., Burk, D.H., and Gettys, T.W. 2020.  Dietary methionine restriction signals to the brain through FGF21 to regulate energy balance and remodeling of adipose tissue.  Obesity (Silver Spring) 28:  1912-1921.  PMCID: PMC7513464
  5. Forney, L.A., Stone, K.P., Gibson, A.G., Vick, A.M., Sims, L., Fang, H., and Gettys, T.W. 2020.  The sexually dimorphic effects of dietary methionine restriction are dependent on age when the diet is introduced.  Obesity (Silver Spring) 28:581-589.  PMCID: PMC7042039.
  6. Wanders, D., L.A. Forney, Stone, K.P., B.E. Hasek, W. Johnson, and Gettys, T.W. 2018. The components of age-dependent effects of dietary methionine restriction on energy balance in rats. Obesity (Silver Spring) 26: 740-746. PMCID: PMC5866213.
  7. Forney, L.A., Stone, K.P., Wanders, D., and Gettys, T.W. 2017. Sensing and signaling mechanisms linking dietary methionine restriction to the behavioral and physiological components of the response. Frontiers in Neuroendocrinology 51: 36-45. PMCID: PMC6013330. 
  8. Forney, L.A., Stone, K.P., Wanders, D., Ntambi, J.M., and Gettys, T.W. 2018. The role of suppression of hepatic SCD1 expression in the metabolic effects of dietary methionine restriction. Applied Physiology, Nutrition and Metabolism 43: 123-130. PMCID: PMC5788716.
  9. Ghosh, S., Forney, L.A., Wanders, D., Stone, K.P., and Gettys, T.W. 2017. An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice. PLOS One PMCID: PMC5433721. 
  10. Forney, L.A., Wanders, D., Stone, K.P., Pierse, A., and Gettys, T.W. 2017. Concentration-dependent linkage of dietary methionine restriction to the components of its metabolic phenotype. Obesity (Silver Spring) 25: 730-738. PMCID: PMC5373958.
  11. Wanders, D., Forney, L.A., Stone, K.P., Burk, D.H., Pierse, A., and Gettys, T.W. 2017. FGF21 mediates the thermogenic and insulin-sensitizing effects of dietary methionine restriction but not its effects on hepatic lipid metabolism. Diabetes 66: 858-867. PMCID: PMC5360300.
  12. Wanders, D., Stone, K.P., Forney, L.A., Cortez, C.C., Dille, K.N., Simon, J., Xu, M., Hotard, E.C., Nikonorova, I.A., Pettit, A.P., Anthony, T.G., and Gettys, T.W. 2016. Role of GCN2-independent signaling through a non-canonical PERK/NRF2 pathway in the physiological responses to dietary methionine restriction. Diabetes 65: 1499-1510. PMCID:4878423.
  13. Stone, K.P., Wanders, D., Calderon, L.F., Spurgin, S.B., Scherer, P.E., and Gettys, T.W. 2015. Compromised responses to dietary methionine restriction in adipose tissue but not liver of ob/ob mice. Obesity (Silver Spring) 23: 1836-1844. PMCID: 4551572.
  14. Patil, Y.N., Dille, K.N., Burk, D.H., Cortez, C.C., and Gettys, T.W. 2015. Cellular and molecular remodeling of inguinal adipose tissue by dietary methionine restriction. Journal of Nutritional Biochemistry 26: 1235-1247. PMCID: 4631695. 
  15. Wanders, D., Stone, K.P., Dille, K.N., Simon, J., Pierse, A., and Gettys, T.W. 2015. Metabolic responses to dietary leucine restriction involve remodeling of adipose tissue and enhanced hepatic insulin signaling. Biofactors 41: 391-402. PMCID: 4715699. 
  16. Wanders, D., Burk, D.H., Cortez, C.C., Van, N.T., Stone, K.P., Baker, M., Mendoza, T., Mynatt, R.L., and Gettys, T.W. 2015. UCP1 is an essential mediator of the effects of methionine restriction on energy balance but not insulin sensitivity. FASEB J. 29: 2603-2615. PMCID: 4447219.
  17. Stone, K.P., Wanders, D., Orgeron, M., Cortez, C. and Gettys, T.W. 2014. Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 63: 3721-3733. PMCID: 4207389. 
  18. Ghosh, S., Wanders, D., Stone, K.P., Van, N.T., Cortez, C.C., and Gettys, T.W. 2014. A systems biology analysis of the unique and overlapping transcriptional responses to calorie restriction and dietary methionine restriction in rats. FASEB J. 28: 2577-2590. PMCID:4021438. 
  19. Hasek, B.E., Boudreau, A., Shin, J., Feng, D., Laque, A.I., Listi, D., Stewart, L.K., Prufer-Stone, K., Pessin, J., and Gettys, T.W. 2013. Transcriptional remodeling of the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction. Diabetes 62: 3362-3372. PMCID: 3781441.. 
  20. Anthony, T.G., Morrison, C.D., and Gettys, T.W. 2013. Remodeling of lipid metabolism by dietary restriction of essential amino acids Diabetes 62: 2635-2644. PMCID:3717867